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Abstract We compare three one-dimensional Nernst–Planck–Poisson systems that
describe ion distribution near the electrode surfaces with planar, cylindrical and spher-
ical symmetry respectively. These three models take into account ion diffusion and
migration. In particular they describe the diffusive layers formed by Li+ ions in the
vicinity of the graphite electrode particles. The three types of symmetry appear due to
three different ways of particle ordering inside the electrode. In this paper we construct
the exact steady state solutions to these systems and approximate solutions in form
of power series. Then we solve the systems numerically and compare the results. We
discuss the influence of symmetry in electrode particle ordering on the steady state
distribution of ions in the diffusive layer.
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1 Introduction

The porous electrodes are loosely formed of separate particles that accumulate the ions
from the surrounding electrolyte. In particular, intercalation and deintercalation of Li+
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ions into and out of carbon particles make the basis of the Li-ion battery functioning
[1–5]. Significantly less attention is paid to the distribution of ions in the diffusive
layers adjacent to the particle surfaces. Meanwhile the formation of ion congestions
around the particles is the important prerequisite for further intercalation [6–10].

Ion density inside the porous electrode strongly depends on the electrode structure.
It is well established experimentally that the particles may form carbon films, carbon
fibers or shapeless carbon clods inside the electrode [5,10]. These three cases corre-
spond to the flat, cylindrical and spherical symmetry; consequently we obtain three
single particle models [5–7,12] for the description of ion diffusion and migration: the
origin is placed at a randomly chosen single particle and it becomes a representative
of all other electrode particles; then the Nernst–Planck–Poisson system [11–14] in
Cartesian, cylindrical or spherical coordinate system is written down with respect to
this origin. Unlike [15], in this paper we do not study intercalation at the surface of
the particle itself, but are interested in the dynamics of ion concentration and electric
potential around it.

Following [13], in this paper we assume that in all three cases our models are
symmetric with respect to two spatial coordinates out of three and thus are one-
dimensional. We construct the exact steady state solutions for our models and compare
the final ion concentrations and electrical potentials obtained in different geometries
for the same parameter values. Then we study numerically the evolution of the initial
ion distributions in the neighborhood of an electrode particle. Such wise we evaluate
the influence of the electrode structure on the rate of the processes inside it.

2 Mathematical model

Let us consider three one-dimensional variants of the single particle model. If all
particles belong to the same plane, then the only significant spatial variable is the one
perpendicular to this plane; we obtain the Cartesian 1D model. If all particles lie on the
same line then the coordinate along this line and the angular coordinate are insufficient,
and the only significant spatial variable is the radius in the plane perpendicular to this
line; it gives us the cylindrical 1D model. Finally, if the particles are not ordered at all
and make a carbon clod, then the only significant spatial variable is the distance from
the origin (the length of the radius vector); this case yields the spherical 1D model.

Let θ be the normalized concentration of the Li+ ions (0 ≤ θ ≤ 1) and let ϕ

be the electric potential. Then the electrodiffusive processes inside electrolyte in the
single particle neighborhood are described by the Nernst–Planck–Poisson system of
equations:

∂θ

∂t
= D · div

(
grad θ + z · F

RT
· θ · grad ϕ

)
, (1)

div grad ϕ = −4π · F

ε
· Cmax · θ. (2)

Here z = +1 is the electrical charge of the Li+ ion, D is the diffusion coefficient
of these ions in the electrolyte, ε is the electrical permittivity of media and Cmax is
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the maximal possible concentration of the Li+ ions in it. The system (1)–(2) may be
rewritten for the considered symmetrical 1D models in the following way:

∂θ

∂t
= D · div

(
grad θ + z · F

RT
· θ · grad ϕ

)
; (3)

1

rn
· ∂

∂r

[
rn · ∂ϕ

∂r

]
= −β · θ, (4)

α = zF

RT
, β = 4π F

ε
· Cmax, n = 0, 1, 2; 0 < r < Rmax, 0 < t < Tmax.

Here n = 0, 1 and 2 stands for the Cartesian, cylindrical and spherical cases respectively.
The spatial coordinate r belongs to the interval (0; Rmax). We consider two sets of
boundary conditions for (3)–(4):

∂θ

∂r
= 0,

∂ϕ

∂r
= 0 at r = 0; (5)

θ = θ∗, ϕ = ϕ∗ at r = Rmax, (6)

The boundary conditions (6) mean the absence of gradients of the electric potential
and the diffusive ion flux at r = 0, and that both the ion concentration and the electric
potential remains constant at r = Rmax. The initial conditions for (3)–(4)

θ(0, r) = f (r), ϕ(0, r) = 0. (7)

imply that initially no potential is applied and the ions are distributed according to the
given law f = f(r).

The existence and the asymptotes of the weak solutions to (3)–(7), as well as the
appropriate numerical methods were studied in details in [11–13] and particularly in
[14], but very few results have been obtained for the classical solutions to this problem.

3 Steady state solutions

3.1 Power series solution

Let θ = θ(r) and φ = φ(r) be the steady state solutions to (3)–(6). Then they satisfy
the system:

d

dr

[
rn ·

(
dθ

dr
+ α · θ · dϕ

dr

)]
= 0, (8)

1

rn
· d

dr

[
rn · dϕ

dr

]
= −β · θ, (9)

dθ

dr
= 0,

dϕ

dr
= 0 at r = 0; (10)
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θ = θ∗, ϕ = ϕ∗ at r = Rmax. (11)

Following [12], we introduce the function s = s(r):

s(r) =
∫ r

0
θ(ρ) · ρndρ, n = 0, 1, 2; there f ore

ds

dr
(r) = θ(r) · r;

d2s

dr2 (r) = dθ

dr
(r) · r + θ(r). (12)

We integrate (8) and (9) from 0 to r, take into account the boundary conditions (10)
and obtain:

dθ

dr
(r) + α · θ(r) · dϕ

dr
(r) = 0; rn dϕ

dr
(r) = −β · s(r). (13)

The final yield of expressions (12) and (13) is the second order equation with respect
to s = s(r):

d2s

dr2 = 1

rn
· ds

dr
(r) · [κ(n) + α · β · s(r)] , where κ(n) =

⎧⎨
⎩

0 for n = 0
1 for n = 1
2r for n = 2

. (14)

We seek the solution to (14) in form of power series with respect to r:

s(r) = s0 + s1 · r + s2 · r2 + s3 · r3 + · · · . (15)

We introduce the new parameter: σ = dn+1s/drn+1(0). Now the conditions for (15) at
r = 0 look as follows:

s(0) = 0, ds/dr(0) = σ f or n = 0;
s(0) = 0, ds/dr(0) = 0, d2s/dr2(0) = σ f or n = 1;
s(0) = 0, ds/dr(0) = 0, d2s/dr2(0) = 0, d3s/dr3(0) = σ f or n = 2.

(16)

We substitute (15) and its formal derivatives into (14), take into account (16) and
equate the coefficients at the equal powers of r. We obtain the infinite recurrent system
of equations for sk , which yields:

Using (12), we express θ (r) through s(r): θ(r) = r−1 · ds/dr (r) and write down the
series for θ = θ (r):

f or n = 0 : θ0(r) = θ0
0 + θ0

1 · r + θ0
2 · r2 + · · ·

= σ ·
(

1 + 1

2
αβσ · r2 + 1

6
α2β2σ 2 · r4 + · · ·

)
;

f or n = 1 : θ1(r) = θ1
0 + θ1

1 · r + θ1
2 · r2 + · · ·

= σ ·
(

1 + 1

4
αβσ · r2 + 3

64
α2β2σ 2 · r4 + · · ·

)
;
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f or n = 2 : θ2(r) = θ2
0 + θ2

1 · r + θ2
2 · r2 + · · ·

= σ ·
(

1 + 1

6
αβσ · r2 + 1

45
α2β2σ 2 · r4 + · · ·

)
. (17)

By induction: odd coefficientsθ0,1,2
2k+1are equal to zero; even coefficients θ

0,1,2
2k satisfy:

θ
0,1,2
0 = σ ;

∣∣∣θ0,1,2
2k

∣∣∣ <

∣∣∣θ0,1,2
2k−2

∣∣∣ · |αβσ | , k = 1, 2, 3, . . .

Taking into account that 0 < r < Rmax, we get an estimate for (17):

θ0,1,2(r) < σ ·
∞∑

k=0

(αβσ R2
max)

k .

Thus the sufficient condition of uniform convergence for the series (17) with n = 0,
1 or 2 is:

∣∣∣αβσ R2
max

∣∣∣ < 1. (18)

If (18) is true, then the function θ0,1,2(r), given by (17), exists; and it is continuously
differentiable as many times as we need. It satisfies the boundary condition at r = 0. The
value of σ is found from the boundary condition at r = Rmax: we solve the equation
θ0,1,2(Rmax) = θ∗ with respect to σ . This equation always has a unique positive
solution for any 0 ≤ θ∗ ≤ 1. Let us treat θ0,1,2(Rmax) as a function of σ . From (17)
it is easily seen that this function turns into zero at σ = 0 and grows infinitely and
monotonously for −∞ < σ < +∞. Therefore it reaches the value θ∗ > 0 only once
for some σ ∗ > 0, which is the sought solution. Now construction of the series solution
θ = θ(r) to the system (8)–(11) is completed. As well we can construct the series for
ϕ = ϕ(r).

3.2 Analytical solution

We have proved that the system (8)–(11) has a unique classical solution if the condition
(18) holds. This result is particularly interesting for the spherical case (n = 2), because
the analytical solution for n = 2 is still unknown [12,13]. Meanwhile we can solve the
system (8)–(11) analytically for n = 0 and n = 1 and compare these solutions with (17).
Let ρ = rn+1, then (14) turns into:

ρλn
d

dρ

(
ds

dρ

)
= γn

d

dρ

(
s2

)
, where

λ0 = 0 and γ0 = αβ
2 f or n = 0;

λ1 = 1 and γ1 = αβ
4 f or n = 1.

(19)
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We integrate twice both sides of (19) and then come back to the independent variable
r. As a result we obtain:

f or n = 0 : s(r) = C0

γ0
· tg(C0r), where C0 = const > 0; (20)

f or n = 1 : s(r) = C1r2

1−γ1C1r2 , where C1 = const > 0. (21)

The solutions to (19) should be continuous, so we get the restrictions on C0 and C1:

Rmax <
π

2C0
; Rmax <

1√
γ1C1

. (22)

Now we can express the sought functions θ = θ(r) and φ = φ(r) using (12)–(13):

f or n = 0 : θ(r) = C2
0

γ0
· 1

cos2(C0r)
, ϕ(r) = 2

α
(ln(cos(C0r)) + �0) ;

C0,�0 = const;
f or n = 1 : θ(r) = 2C1

(1 − γ1C1r2)2 , ϕ(r) = 2

α

(
ln(1 − γ1C1r2) + �1

)
;

C1,�1 = const. (23)

Integration constants C0 and C1,�0 and �1 may be found from boundary conditions
(10)–(11). It is easily seen that (10) is true for any C0, C1,�0,�1, while (11) gives
us two pairs of equations:

f or n = 0 : θ∗ · cos2(C0 Rmax) = C2
0

γ0
, �0 = α

2
ϕ∗ − ln(cos(C0 Rmax)); (24)

f or n = 1 : θ∗ ·
(

1 − γ1C1 R2
max

)2 = 2C1, �1 = α

2
ϕ∗ − ln(1 − γ1C1 R2

max).

(25)

The first equation in both pairs (24) is to be solved with respect to C0 and C1. We
shall prove now that the positive solutions C0 and C1 to (24) and (25) always exist,
are unique and satisfy (22). Suppose that C0 runs from 0 to π/2Rmax. Then the left
hand side of the first equation of (24) monotonously decreases from θ∗ to 0 while the
right hand side monotonously increases from 0 to π2/(2Rmax)

2γ0 > 0. Now suppose
that C1 runs from 0 to 1/γ1(Rmax)

2. Then the left hand side of the first equation of
(25) monotonously decreases from θ∗ to 0 while the right hand side monotonously
increases from 0 to 2/γ1(Rmax)

2 > 0. Due to the features of continuous functions,
the graphs of these left and right hand sides will intersect in the considered intervals
only once, giving us the sought solutions C0 and C1. After that �0 and �1are explicitly
expressed through C0 and C1 from the second equations of (24) and (25). The formulas
(23) with constants C0, C1,�0,�1 from (24) to (25) finally give us the solution to the
problem (8)–(11) for n = 0 and n = 1.
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Table 1 Power series
coefficients for steady state
solutions in various coordinate
systems

k Cartesian
sk (n = 0)

Cylindrical
sk (n = 1)

Spherical
sk (n = 2)

0 0 0 0

1 σ 0 0

2 0 1/2 σ 0

3 (α β /6) σ2 0 1/3 σ

4 0 (α β /16) σ2 0

5 (α2 β2 /30) σ3 0 (α β /30) σ2

6 0 (α2 β2 /128) σ3 0

7 … 0 (α2 β2 /315) σ3
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Fig. 1 Steady state solutions: series (solid line) and analytical (dotted line) in Cartesian (n = 0) and cylin-
drical (n = 1) coordinates for θ∗ = 1

3.3 Comparison of the power series and analytical solutions

We carry out computations with the set of parameters from [10]: Cmax = 2.5 ×
10−2 mol/cm3, Rmax = 10−3 cm, ε = 2.0, F = 96,485 coulomb/mol, R =
8.31 J/(K mol), T = 300 K; ϕ∗ = 1.0 V, θ∗ belongs to [0;1]. Then α ≈ 39 and
β ≈ 15,156. We start with comparing the results of paragraphs 3.1 and 3.2: the series
solution (17) with coefficients from Table 1 and the analytical solution (23) with con-
stants from (24) to (25) for n = 0 and n = 1. They are shown in Fig. 1. The convergence
of the series (17) proves to be good enough: from Fig. 1 it follows that the finite sum
with three terms gives us a very good approximation of the exact solution.

Then we compare the series steady state solutions to (8)–(11) with the same para-
meter values in Cartesian, cylindrical and spherical coordinates. It is easily seen in
Fig. 2 that the qualitative shape of these solutions is the same, but for any 0 < r < 1
we have: θ0(r) < θ1(r) < θ2(r). It means that less ordering of the electrode particles
(the clod is less ordered than the fiber and the fiber is less ordered than the film) yields
greater final concentrations of intercalated ions.
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Fig. 2 Series steady state solutions in Cartesian (solid line), cylindrical (broken line) and spherical (dotted
line) coordinates

4 Numerical results and discussion

We proceed with the time-dependent solutions to the initial problem (3)–(7). For solv-
ing this problem numerically we use the implicit symmetric finite volume difference
scheme with the 2-nd order of accuracy:

θk
j − θk−1

j

τ

= 1

2h

D

(r j )n

[(
r j+1 + r j

2

)n

·
(

θk
j+1 − θk

j

h
+ α · θk

j+1 + θk
j

2
· ϕk

j+1 − ϕk
j

h

)

−
(

r j−1 + r j

2

)n

·
(

θk
j − θk

j−1

h
+ α · θk

j + θk
j−1

2
· ϕk

j − ϕk
j−1

h

)]
;

θk
0 = (4θk

1 − θk
2 )/3; θk

M = θ∗;
1

(r j )2

1

h

[(
r j+1 + r j

2

)n

· ϕk
j+1 − ϕk

j

h
−

(
r j−1 + r j

2

)n

· ϕk
j − ϕk

j−1

h

]

= −β
[
θk

j + θk−1
j

]
;

ϕk
0 = (4ϕk

1 − ϕk
2)/3; ϕk

M = ϕ∗; h = Rmax

M
, τ = Tmax

N
, j = 1, . . . , M − 1;

k = 0, . . . , N ; n = 0, 1 or 2. (26)

Here h and τ are the steps with respect to the spatial and temporal coordinates r and t.
Being implicit, this scheme is unconditionally stable, and, like the original differential
model, this scheme is flux conservative. For solving the nonlinear system of equations
on every step we apply the Seidel-type iterations.
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The aim of our computational experiment is to compare numerically the influence
of the electrode particles’ ordering on the Li ion movement in the diffusive layer dur-
ing intercalation and deintercalation in the absence of the external electric potentials.
For this purpose we consider two types of the initial ion distribution: the linear asym-
metrical with maximum at the left (inner) or right (outer) boundary and the quadratic
symmetrical with maximum in the middle. In both cases we solve (8) with the set of
parameters from [10]: Cmax = 2.5 × 10−2 mol/cm3, Rmax = 10−3 cm, Tmax = 102 s,
ε = 2.25, D = 10−6 cm2/s, F = 96, 485 coulomb/mol, R = 8.31 J/(K mol),
T = 300 K.

At first we take the initial concentration of ions as θ(0, r) = 1 − r/Rmax or θ(0, r)
= r/Rmax, and the initial electric potential as ϕ(0, r) = ϕ∗ = 0. This kind of the
initial data describes the physically relevant situation when the external potential is
absent and the electric field appears due to the non-uniform charge distribution. Two
variants of θ (0,r) correspond to the two extreme types of ion distribution: they are
either concentrate near the particle surface or just emerge at the far boundary of the
diffusive layer.

The results are shown in Fig. 3a–c for the Cartesian, cylindrical and spherical
models respectively with θ(0, r) = 1 − r/Rmax. The initial ion concentration and its
final steady state distribution are shown with dotted lines; the intermediate results for
the time t = 1, 10, 20 and 30 s are shown with solid lines. We see that the qualitative
behavior of the solutions to the three models is much the same: the ion concentration
slowly evolves to the slightly non-uniform steady state distribution, moving like a wave
from the inner (left) boundary r = 0 to the outer (right) boundary r = Rmax. It should be
mentioned that in comparison with the slow evolution of the ion concentration θ , the
electric potential ϕ very quickly jumps to its practically constant value. For this reason
we do not show the graphs of ϕ together with the graphs of θ in Fig. 3a–c. Also we
do not plot here the numerical results for the initial concentration θ(0, r) = r/Rmax,
because they are quite alike with the described above, with the only difference that
the wave goes from right to left.

At the same time there is a distinct difference between the graphs in Fig. 3a–c. The
steady state distribution varies significantly: its average amplitude equals 0.5 for the
Cartesian, 0.33 for the cylinder and 0.25 for the spherical coordinates. Also for t = 30 s
the Cartesian solution is still far from the steady state, while the cylindrical solution
practically coincides with it and the difference between the spherical solution and the
steady state is less than 10−6 already for t = 20 s. It should be emphasized that all these
differences appear only due to the different symmetry suppositions, because all other
parameters of the three models are exactly the same.

We also solve (8) with the same set of parameters, but with the different initial
conditions:

θ(0, r) = 4

R2
max

r(Rmax − r); ϕ = ϕ∗. (27)

It is done for the proper comparison of the roles of migration and diffusion in the three
considered models. The initial conditions (27) are symmetric with respect to r. Pure
diffusion would keep this symmetry, but due to the difference of boundary conditions
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A

B

C

Fig. 3 Ion concentration versus distance from the electrode particle in a Cartesian coordinates, b cylindrical
coordinates, c spherical coordinates
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Fig. 4 Ion concentration versus distance from the electrode particle: symmetric initial distribution solid,
dash-dotted and dotted lines correspond to Cartesian, cylindrical and spherical coordinates. The labels 10,
50 and 1,000 at the graphs stand for the time in seconds

for φ at r = 0 and r = Rmax the electric field appears; it adds migration to the diffusive
motion of ions and breaks the symmetry of the initial distribution, as it is shown in
Fig. 4.

It is easily seen that the Cartesian case differs from the cylindrical and spherical:
the ion concentration at left (inner) side in the Cartesian model remains lower than at
the right (outer) side, while in the cylindrical and spherical models it is vice versa. It
is particularly clear at t = 50 s, when the concentration maximum in the cylindrical and
spherical models reaches the left side, but in the Cartesian model it remains close to
the center. Never the less, the final steady-state distribution in all three cases has the
same shape—it is practically uniform with respect to r and has a small increase near
the right side. It should be mentioned that the final steady state of the cylindrical model
is closer to the Cartesian steady state than to the spherical one, though the evolution
of ion concentration in the cylindrical model resembles the spherical evolution much
more.

5 Conclusions

We’ve compared analytically and numerically three models of the ion density and the
electric potential distribution around the single charged particle. Very good accuracy
of the power series approximate solutions was shown by comparing them with the
exact steady state solutions in Cartesian and cylindrical coordinates. Numerically we
have demonstrated that various symmetry suppositions (flat, cylindrical and spherical)
lead to significant quantitative differences of the steady state solutions, but their shapes
are qualitatively similar.

From physical point of view the obtained results may be interpreted as modeling of
the processes inside the diffusive layer in the vicinity of the electrode particle. These
processes form the environment for the Li+ intercalation at the particle surface. We
have demonstrated that the three basic cases of the particle ordering (plane, linear and
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chaotic) inside the electrodes of Li-ion batteries exhibit different relaxation time and
finally come to the slightly non-uniform steady states with similar shapes, but with
different average values.
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